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Features 
•GPU Accelerated 

•OpenCL 

•Hybrid CPU/GPU 

•Extensible & Modular 
•Add models & methods 

•Python scriptable 
•Specify and estimate models 

•Cross compatible 
•Camino, BrainVoyager, nipy(pe), fsl, … 

•Open source 

 

 Object Oriented Design 

 

 

We show that diffusion microstructure modeling including crossing fibers, 

complex microstructure compartment models and compartment-specific 

T2’s is possible on an extensive 384 volume multi-shell dMRI data set. The 

usage of 100mT/m gradients and multi-band (simultaneous multislice) 

imaging was crucial in obtaining this ActiveAx optimized dataset. In future 

work it will be explored to which degree this data can support axonal 

density, dispersion and diameter distributions in the entire human white 

matter. With increasing availability of stronger gradients (>=80mT/m) and 

simultaneous multislice imaging in clinical machines, GPU accelerated 

microstructure modeling tools will become critical to this endeavor. 
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•Optimization and sampling 
•Levenberg-Marquard 

•Markov Chain Monte Carlo 

•Many models implemented 
•Charmed 

•Noddi 

•Ball and Stick 

•Tensor 

•AxCaliber 

•ActiveAx (MMWMD) 

•… 

The OO design abstracts 

microstructure compartment 

models, noise models and 

optimization and sampling 

routines, such that more can be 

added in a modular way. 

Using the toolbox one can build 

complex models by combining 

"Estimatable Functions" (e.g. 

compartment models). 

Together with a prior, 

parameter codec and proposal 

function these models can be 

handed to any CLRoutine (e.g. 

LM optimizer) to be able to 

estimate the parameters using 

different optimization and 

sampling techniques. 

(( SignalScalar (),  

  ((((Weight(). ren ( 'w' , óf_ball ' ),  

       T2().fix( 'T2' , 0.5 ). ren ( 'T2' , 'T2_ball' ),  

       Ball().fix( 'd' ,  1.7e - 9)),  

        '*' ),  

    ((Weight(). ren ( 'w' , óf_stick ' ),  

       T2().fix( 'T2_short' ). ren ( 'T2' , 'T2_stick' ),  

       Stick().fix( 'd' ,  1.7e - 9)),  

        '*' )),  

    '+' )),   

'*' )  

Microstructure model specification language 
In the Python microstructure modelling language it is possible to generate 

complex hierarchical multi-compartment models for dMRI using a tree 

structure written as an hierarchical list. Compartment models are combined 

using basic math operators and/or decorated with a "Model Decorator 

Function" (for example, a noise model). For instance: (Ball(),  Stick(),  '+' )   

 A more complete Ball&Stick 

example, with volume fractions 

(weights) and Ball- and Stick-

specific T2's is on the right. 

Unique parameter maps are 
ensured with the rename (ren ) 

command. To fix parameters to 

specific values one can use the 
fix  command with either a 

constant or previously 

calculated results (constants or 

per voxel). 

Introduction 
Multi-shell high angular resolution diffusion MRI (dMRI) is increasingly used to 

estimate models of brain white matter that include either multiple fiber 

directions in each voxel (e.g. Behrens, 2007) or microstructural information 

such as axonal density, diameters and/or dispersion (Assaf, 2005; Alexander, 

2010; Zhang, 2012). Combining the modeling of multiple direction and 

microstructural information has proved challenging but possible on clinical 

time multi-shell HARDI data with a constant TE which is suboptimal for most 

shells (De Santis, 2014).  

This study has two main objectives: 

1.Investigating complex diffusion microstructure modeling on multi-shell multi-

TE diffusion MRI acquired with a high-end 100mT/m MRI system  

2.Creating a GPU accelerated flexible Python toolbox needed to make  

microstructure analysis of large multi-shell dMRI datasets tractable 

Multi-shell HARDI data was acquired from a single subject on a Siemens 3T 

CONNECTOM Skyra system with maximum gradient strength of 100 mT/m 

and 32-channel RF-coil at the Center for Magnetic Resonance Research 

(CMRR), University of Minnesota, USA. Acquisition and preprocessing were 

performed according to the Human Connectome Project 3T diffusion MRI 

protocols (Sotiropoulous, 2013), modified to a 4-shell ActiveAx protocol 

(Alexander, 2010) at 1,8mm isotropic.  

  Acquired shells were (b-value, TE, directions): 1) 595 s/mm2, 55 ms, 

128; 2) 1025 s/mm2, 74 ms, 64; 3) 1950 s/mm2, 79 ms, 64; 4) 3350 s/mm2, 74 

ms, 64, for a total of 384 volumes and 24 b0’s. All shells were acquired twice 

with multi-band factor 4, once with phase encode directions LR, once with RL. 

  Matched T2-relaxometry data was acquired with spin-echo EPI at TEs 

between 35ms and 140ms, to allow multi-compartment T2 modeling. 

Results 

Noddi (LM: 25 seconds, normally ~15 minutes) 
NODDI was estimated with a 3 compartment model (EC, IC and Ball) with a 500ms T2 for the Ball 

compartment and a short T2 for the EC and IC compartments. Various parameters were initialized 
from previous (T2(), T2())  and (Ball(), Stick()) fits. 

((SignalScalar(), 

  ((((T2().fix('T2').ren('T2', 'T2short'), 

       ((((Weight().ren('w', 'NDI'),  

            Noddi_IC().fix('d', 1.7e-9) 

                             .fix('theta') 

                             .fix('phi')),  

            '*'), 

         ((Weight().ren('w', 'w_ec'),  

            Noddi_EC().fix('d', 1.7e-9) 

                         .fix('theta') 

                         .fix('phi') 

                         .ren('kappa', 'k_ec')),  

            '*')),  

        '+')),  

       '*'), 

    ((T2().fix('T2', 0.5) 

             .ren('T2', 'T2long'),  

       Weight().ren('w', 'w_csf'),  

       Ball().fix('d', 3.0e-9)),  

       '*')),  

    '+')),  

'*') 

 

((SignalScalar(),  

  ((((Weight().ren('w', 'w_ball'),  

       T2().fix('T2', 0.5) 

              .ren('T2', 'T2long'),  

       Ball().fix('d', 3.0e-9)),  

       '*'), 

    ((T2().fix('T2') 

             .ren('T2', 'T2short'), 

      ((((Weight().ren('w', 'w_stick1'),  

           Stick().fix('d', 1.7e-9)),  

           '*'), 

        ((Weight().ren('w', 'w_stick2'),  

          Stick().fix('d', 1.7e-9) 

                    .ren('theta', 'theta1') 

                    .ren('phi', 'phi1')),  

          '*')),  

        '+')),  

      '*')),  

    '+')),  

'*') 

 ((SignalScalar(), 

    ((((T2().fix('T2') 

                 .ren('T2', 'T2short'), 

         ((((Weight().ren('w', 'w_cyl'), 

               CylinderGPD() 

                           .fix( 'd', 1.7e9) 

                           .fix( 'theta') 

                           .fix( 'phi')),  

               '*' ), 

            ((Weight().ren('w', 'w_zep'), 

               Zeppelin().fix('phi') 

                                .fix( 'd', 1.7e-9) 

                                .fix( 'theta')),  

               '*' )), 

            '+')), 

         '*' ), 

       ((T2().fix('T2', 0.5) 

                 .ren('T2', 'T2long'), 

         Weight().ren('w', 'w_ball'), 

         Ball().fix( 'd', 3.0e-9)), 

         '*' )), 

    '+')), 

'*' ) 

ActiveAx (LM: 310 seconds, normally ~1 hour) 
The MMWMD model (also known as ActiveAx) was estimated using a 3 compartment model  

(CylinderGPD, Zeppelin and Ball). The T2s for CylinderGPD and Zeppelin (short T2) and Ball (long T2)  
were initialized from a previous (T 2(),  T2()) fit. 

 

Ball and 2 Sticks (LM: 31 seconds, normally ~20 minutes) 
Ball and two Sticks was estimated with a fixed 500ms T2 for the Ball compartment and a short T2 for 

the Stick models. The directions of the first Stick and the short T2 were initialized were initialized from 
previous (T2(), T2())  and (Ball(), Stick())  fits (i.e.: a cascade)5. 

Directions 

Directions 

Directions 


