
Conclusions

White matter microstructure modelling using a

modular and extensible gpu accelerated toolkit

Robbert Harms1, Matteo Bastiani1, Junqian Xu2, Essa Yacoub3, Rainer Goebel1, Alard Roebroeck1

1Maastricht University, Maastricht, Netherlands, 2Icahn School of Medicine,

New York, NY, USA 3University of Minnesota, Minneapolis, MN, USA

For reprints or

registering to the

(release) mailing list:

robbert.harms@

maastrichtuniversity.nl

Diffusion Microstructure Toolbox

Data

Features
•GPU Accelerated

•OpenCL

•Hybrid CPU/GPU

•Extensible & Modular
•Add models & methods

•Python scriptable
•Specify and estimate models

•Cross compatible
•Camino, BrainVoyager, nipy(pe), fsl, …

•Open source

 Object Oriented Design

We show that diffusion microstructure modeling including crossing fibers,

complex microstructure compartment models and compartment-specific

T2’s is possible on an extensive 384 volume multi-shell dMRI data set. The

usage of 100mT/m gradients and multi-band (simultaneous multislice)

imaging was crucial in obtaining this ActiveAx optimized dataset. In future

work it will be explored to which degree this data can support axonal

density, dispersion and diameter distributions in the entire human white

matter. With increasing availability of stronger gradients (>=80mT/m) and

simultaneous multislice imaging in clinical machines, GPU accelerated

microstructure modeling tools will become critical to this endeavor.

References:

1. Alexander D. (2010), Neuroimage, no. 52(4), pp. 1374-1389

2. Assaf Y. (2005), Neuroimage , no. 27(1), pp. 48-58

3. Behrens A. (2007), Neuroimage, no. 34(1), pp. 144-155

4. De Santis (2014), Magn. Reson. Med., no. 71, pp. 661ï671

5. Panagiotaki E. (2011), NeuroImage, no. 59(3), pp. 2241-2254

6. Sotiropoulos S. (2013), Proc. Intl. Soc. Mag. Reson. Med. no. 21, pp. 0052

7. Zhang H. (2012), Neuroimaging, no. 61(4), pp.1000-1016

•Optimization and sampling
•Levenberg-Marquard

•Markov Chain Monte Carlo

•Many models implemented
•Charmed

•Noddi

•Ball and Stick

•Tensor

•AxCaliber

•ActiveAx (MMWMD)

•…

The OO design abstracts

microstructure compartment

models, noise models and

optimization and sampling

routines, such that more can be

added in a modular way.

Using the toolbox one can build

complex models by combining

"Estimatable Functions" (e.g.

compartment models).

Together with a prior,

parameter codec and proposal

function these models can be

handed to any CLRoutine (e.g.

LM optimizer) to be able to

estimate the parameters using

different optimization and

sampling techniques.

((SignalScalar (),

 ((((Weight(). ren ('w' , óf_ball '),

 T2().fix('T2' , 0.5). ren ('T2' , 'T2_ball'),

 Ball().fix('d' , 1.7e - 9)),

 '*'),

 ((Weight(). ren ('w' , óf_stick '),

 T2().fix('T2_short'). ren ('T2' , 'T2_stick'),

 Stick().fix('d' , 1.7e - 9)),

 '*')),

 '+')),

'*')

Microstructure model specification language
In the Python microstructure modelling language it is possible to generate

complex hierarchical multi-compartment models for dMRI using a tree

structure written as an hierarchical list. Compartment models are combined

using basic math operators and/or decorated with a "Model Decorator

Function" (for example, a noise model). For instance: (Ball(), Stick(), '+')

 A more complete Ball&Stick

example, with volume fractions

(weights) and Ball- and Stick-

specific T2's is on the right.

Unique parameter maps are
ensured with the rename (ren)

command. To fix parameters to

specific values one can use the
fix command with either a

constant or previously

calculated results (constants or

per voxel).

Introduction
Multi-shell high angular resolution diffusion MRI (dMRI) is increasingly used to

estimate models of brain white matter that include either multiple fiber

directions in each voxel (e.g. Behrens, 2007) or microstructural information

such as axonal density, diameters and/or dispersion (Assaf, 2005; Alexander,

2010; Zhang, 2012). Combining the modeling of multiple direction and

microstructural information has proved challenging but possible on clinical

time multi-shell HARDI data with a constant TE which is suboptimal for most

shells (De Santis, 2014).

This study has two main objectives:

1.Investigating complex diffusion microstructure modeling on multi-shell multi-

TE diffusion MRI acquired with a high-end 100mT/m MRI system

2.Creating a GPU accelerated flexible Python toolbox needed to make

microstructure analysis of large multi-shell dMRI datasets tractable

Multi-shell HARDI data was acquired from a single subject on a Siemens 3T

CONNECTOM Skyra system with maximum gradient strength of 100 mT/m

and 32-channel RF-coil at the Center for Magnetic Resonance Research

(CMRR), University of Minnesota, USA. Acquisition and preprocessing were

performed according to the Human Connectome Project 3T diffusion MRI

protocols (Sotiropoulous, 2013), modified to a 4-shell ActiveAx protocol

(Alexander, 2010) at 1,8mm isotropic.

 Acquired shells were (b-value, TE, directions): 1) 595 s/mm2, 55 ms,

128; 2) 1025 s/mm2, 74 ms, 64; 3) 1950 s/mm2, 79 ms, 64; 4) 3350 s/mm2, 74

ms, 64, for a total of 384 volumes and 24 b0’s. All shells were acquired twice

with multi-band factor 4, once with phase encode directions LR, once with RL.

 Matched T2-relaxometry data was acquired with spin-echo EPI at TEs

between 35ms and 140ms, to allow multi-compartment T2 modeling.

Results

Noddi (LM: 25 seconds, normally ~15 minutes)
NODDI was estimated with a 3 compartment model (EC, IC and Ball) with a 500ms T2 for the Ball

compartment and a short T2 for the EC and IC compartments. Various parameters were initialized
from previous (T2(), T2()) and (Ball(), Stick()) fits.

((SignalScalar(),

 ((((T2().fix('T2').ren('T2', 'T2short'),

 ((((Weight().ren('w', 'NDI'),

 Noddi_IC().fix('d', 1.7e-9)

 .fix('theta')

 .fix('phi')),

 '*'),

 ((Weight().ren('w', 'w_ec'),

 Noddi_EC().fix('d', 1.7e-9)

 .fix('theta')

 .fix('phi')

 .ren('kappa', 'k_ec')),

 '*')),

 '+')),

 '*'),

 ((T2().fix('T2', 0.5)

 .ren('T2', 'T2long'),

 Weight().ren('w', 'w_csf'),

 Ball().fix('d', 3.0e-9)),

 '*')),

 '+')),

'*')

((SignalScalar(),

 ((((Weight().ren('w', 'w_ball'),

 T2().fix('T2', 0.5)

 .ren('T2', 'T2long'),

 Ball().fix('d', 3.0e-9)),

 '*'),

 ((T2().fix('T2')

 .ren('T2', 'T2short'),

 ((((Weight().ren('w', 'w_stick1'),

 Stick().fix('d', 1.7e-9)),

 '*'),

 ((Weight().ren('w', 'w_stick2'),

 Stick().fix('d', 1.7e-9)

 .ren('theta', 'theta1')

 .ren('phi', 'phi1')),

 '*')),

 '+')),

 '*')),

 '+')),

'*')

 ((SignalScalar(),

 ((((T2().fix('T2')

 .ren('T2', 'T2short'),

 ((((Weight().ren('w', 'w_cyl'),

 CylinderGPD()

 .fix('d', 1.7e9)

 .fix('theta')

 .fix('phi')),

 '*'),

 ((Weight().ren('w', 'w_zep'),

 Zeppelin().fix('phi')

 .fix('d', 1.7e-9)

 .fix('theta')),

 '*')),

 '+')),

 '*'),

 ((T2().fix('T2', 0.5)

 .ren('T2', 'T2long'),

 Weight().ren('w', 'w_ball'),

 Ball().fix('d', 3.0e-9)),

 '*')),

 '+')),

'*')

ActiveAx (LM: 310 seconds, normally ~1 hour)
The MMWMD model (also known as ActiveAx) was estimated using a 3 compartment model

(CylinderGPD, Zeppelin and Ball). The T2s for CylinderGPD and Zeppelin (short T2) and Ball (long T2)
were initialized from a previous (T 2(), T2()) fit.

Ball and 2 Sticks (LM: 31 seconds, normally ~20 minutes)
Ball and two Sticks was estimated with a fixed 500ms T2 for the Ball compartment and a short T2 for

the Stick models. The directions of the first Stick and the short T2 were initialized were initialized from
previous (T2(), T2()) and (Ball(), Stick()) fits (i.e.: a cascade)5.

Directions

Directions

Directions

