Probing white matter microstructure at high spatial resolution combining CHARMED protocol optimization and a high performance gradient set

Bastiani, M., De Santis, S., Jones, D., Assaf, Y., Roebroeck, A.
The CHARMED model of white matter

• Multiple compartment model based on diffusion:
 – Restricted diffusion in cylinders of radius r (NEUMAN 1974)
 – 3D Gaussian displacement distribution (DTI)

• Resolves crossing fibers

\[E(q, \Delta) = f_r E_r(q, \Delta) + f_h E_h(q, \Delta) \]
Protocol optimization

De Santis, et al. (2013)

Probing white matter microstructure at high spatial resolution combining CHARMED protocol optimization and a high performance gradient set.
High performance gradients

• **dMRI & the Prisma**
 - Big gradients
 - 80 mT/m amplitude
 - 200 T/m/s slew rate
 - 50cm Field-of-view
 - Big coils

• **Improvements for dMRI**
 - High spatial resolution
 - High b-value
 - High coverage

Probing white matter microstructure at high spatial resolution combining CHARMED protocol optimization and a high performance gradient set
Multi-band imaging

- Excite *multiple* slices simultaneously

- Each coil yields a linear combination of signals from the different slices (weighted by sensitivity profiles)

- Matrix inversion provides a solution to separate slices

Tested protocols

| MB2G2 | Bvalue (s/mm²) | Resolution (mm) | Delta (ms) | delta (ms) | TE (ms) | TR (ms) | Total Scan Time (mm:ss) | Bandwidth (Hz/Px) | Echo Spacing (ms) | |Gj (mT/m) | #dirs | Tot. Readout Time (ms) |
|------------------------|----------------|-----------------|------------|------------|---------|---------|-------------------------|--------------------|------------------|-----------------|-------|-----------------|
| 6000 | 2 | 45.9 | 29.4 | 94 | 4613 | 4:52 | 1602 | 0.71 | 51,836 | 45 | 26,980 | |
| 6000 | 1.5 | 45.6 | 25.7 | 94 | 6016 | 9:03 | 1598 | 0.71 | 58,547 | 72 | 35,500 | |
| 6000 | 1.3 | 45.4 | 22.3 | 94 | 6993 | 14:43 | 1544 | 0.73 | 66,639 | 108 | 43,618 | |

| EP2DG2 | Bvalue (s/mm²) | Resolution (mm) | Delta (ms) | delta (ms) | TE (ms) | TR (ms) | Total Scan Time (mm:ss) | Bandwidth (Hz/Px) | Echo Spacing (ms) | |Gj (mT/m) | #dirs | Tot. Readout Time (ms) |
|------------------------|----------------|-----------------|------------|------------|---------|---------|-------------------------|--------------------|------------------|-----------------|-------|-----------------|
| 6000 | 2 | 43.6 | 33.7 | 94 | 10000 | 9:02 | 1602 | 0.71 | 47,76 | 45 | 26,980 | |
| 6000 | 1.5 | 43.4 | 30.8 | 94 | 12100 | 16:22 | 1598 | 0.71 | 51,65 | 72 | 35,500 | |
| 6000 | 1.3 | 43.2 | 27.5 | 94 | 16200 | 31:37 | 1544 | 0.73 | 57,08 | 108 | 43,618 | |

Probing white matter microstructure at high spatial resolution combining CHARMED protocol optimization and a high performance gradient set.
Probing white matter microstructure at high spatial resolution combining CHARMED protocol optimization and a high performance gradient set
FR difference maps (1)

Mean = -0.0367, std = 0.0755
Mean = -0.0573, std = 0.0848
Mean = -0.0206, std = 0.0772

Mean = -0.0596, std = 0.0726
Mean = -0.0804, std = 0.0851
Mean = -0.0208, std = 0.0740

Probing white matter microstructure at high spatial resolution combining CHARMED protocol optimization and a high performance gradient set.
FR difference maps (2)

Probing white matter microstructure at high spatial resolution combining CHARMED protocol optimization and a high performance gradient set.
Probing white matter microstructure at high spatial resolution combining CHARMED protocol optimization and a high performance gradient set